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PACS. 71.15.Dx – Computational methodology (Brillouin zone sampling, iterative diagonal-
ization, pseudopotential construction).

PACS. 61.72.Lk – Linear defects: dislocations, disclinations.
PACS. 71.15.Pd – Molecular dynamics calculations (Car-Parrinello) and other numerical sim-

ulations.

Abstract. – I present a method for efficiently calculating atomic forces from nonorthogonal
tight-binding models. This method is applicable to systems that cannot be described by a
periodic supercell. I use the method to determine the temperature-dependent structure of a
silicon screw dislocation core. The core reconstruction changes with temperature; a broad,
disordered core with many coordination defects appears at high temperatures.

Introduction. – Simulations using minimal basis tight-binding (TB) models for semicon-
ductors are being applied to a wide range of materials systems, from bulk lattices and point
defects to more complex structures such as dislocations, grain boundaries, and amorphous
systems [1]. Dynamics and finite-temperature properties of these structures are commonly
studied using TB molecular dynamics (MD) simulations of a representative system with pe-
riodic boundary conditions, chosen to be far from the region of interest. Often there is no
particular symmetry relation between different boundary atoms in the physical system, even
though the local environment of each boundary atom resembles an ideal lattice. Dislocations,
which play a vital role in the mechanical response of crystals, are an important example. The
atomic structure of the dislocation core and the energy needed to move it control the response
of the dislocation to applied strain, and therefore the ability of the material to deform plas-
tically. Periodic supercell calculations accommodate the topological changes of the crystal
lattice caused by dislocations by including multiple dislocations with Burgers vectors that
sum to zero [2]. This increases the number of atoms in the simulation and leads to elastic and
electronic interactions with periodic images that could change the dislocation structure [3].
Simulations of dislocations using clusters are unaffected by the topological changes, and con-
tinuum elasticity can be used to fix cluster boundary atoms at positions that are compatible
with the longest range contribution to the dislocation strain field minimizing image forces.
However, cluster simulations must use hydrogen passivated surfaces to reduce the interactions
between surface states and defect states at the dislocation core [4]. To eliminate the effects
of the periodic images and the need for hydrogen passivation, a method is required that pro-
vides a quantum-mechanical description of the interatomic forces in a finite region where each
boundary atom has a local environment resembling an ideal-lattice geometry. Such a method
would also enable atomic resolution in small regions of multiscale simulations [5, 6].
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I present a new method for computing the forces from a nonorthogonal basis TB model
that can be applied to a subsection of a large atomic configuration with a stationary boundary.
Since the rest of the system acts as a reservoir of electrons, the forces are calculated at fixed
electronic chemical potential. The computational effort for the calculation scales linearly with
the number of atoms. I demonstrate the accuracy of the method by a direct comparison with
an exact diagonalization supercell calculation. I use this method to simulate a single shuffle-set
screw dislocation in silicon. This configuration was also studied by Arias and Joannopoulos
who noted that while screw dislocations are observed only as dissociated partials on the
glide set, shuffle-set dislocations are expected to be stable against dissociation. Their results
indeed confirmed this for zero temperature. [7]. Results of my simulations indicate that at low
temperatures the core is narrow and has an ordered reconstruction as expected. In contrast,
at high temperature the core becomes broad and disordered, and the dislocation cannot be
described in terms of straight line segments lying in the Peierls valley connected by kinks and
jogs. I argue that this has a significant effect on the mobility of the dislocation.
While all of the approaches suggested for linear scaling methods [8,9] have been generalized

for nonorthogonal models [9–15], only those based on integration of the Green’s function [15] or
Fermi operator rational expansion [12] are equally efficient for both. Other methods require ei-
ther an explicit computation of the overlap matrix inverse [13,14], or additional multiplications
by the overlap matrix [10,11] which reduce the sparsity of matrices used during intermediate
steps of the algorithm, or both [9]. The method I present for simulating a finite subsection of
an infinite system is based on an iterative inversion calculation of a Green’s function combined
with the Fermi function approximation of Nicholson and Zhang to minimize the computational
effort [16]. Coupling to the infinite system is achieved through a shared electronic chemical
potential and a constraint on the Green’s function at the boundary.

Method. – In TB MD nuclear positions are treated as classical degrees of freedom,
interacting through an effective potential created by electrons described by the quantum-
mechanical TB model. Since they move much more quickly than atoms, the electrons are
assumed to remain in equilibrium [17]. In a finite TB region the number of electrons treated
in the grand canonical ensemble is set by the local chemical potential. Forces are computed
from derivatives of the grand thermodynamic potential for the electrons:

Ω({εi}, T, µ) = 2
∑

i

εif(εi)− TΣ(εi)− µf(εi) , (1)

with respect to atomic position. Here f(ε) is the Fermi function, T is the electronic tempera-
ture, µ is the electronic chemical potential, and

Σ(ε) = −f(ε) ln f(ε)− (1− f(ε)) ln (1− f(ε)) (2)

is the electronic entropy. The eigenvalues εi are the solutions of the generalized eigensystem

Hlmci
m = εiSlmci

m , (3)

where H, S, and ci are the TB model Hamiltonian, overlap matrix, and eigenvectors. The
force on atom α is

Fα = − ∂Ω
∂rα

= −2
∑

i

f(εi) ci
l

(
∂Hlm

∂rα
− εi

∂Slm

∂rα

)
ci
m . (4)

Evaluation of eq. (4) as written would require the explicit calculation of the eigenvalues
and eigenvectors, a procedure that scales as the number of atoms cubed. Instead, it is useful
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to introduce a Green’s function matrix in the TB basis,

G(z) = (zS − H)−1 . (5)

The sum in eq. (4) can then be rewritten as

Fα =
2
π
lim

ε→0+
Im

∫ ∞

−∞
dE f(E + iε)Tr

[
G(E + iε)

(
∂H

∂rα
− (E + iε)

∂S

∂rα

)]
. (6)

This integral (1) can be evaluated by including a contour at infinity in the upper half plane.
Since G(z) is analytic in the upper half plane, the value of the integral is determined entirely
by the poles of f . Evaluating eq. (6) in terms of the residues of the exact Fermi function leads
to a slowly converging infinite sum. Instead I use an approximation with N poles [16]:

f−1(ε) ≈ f−1
N (ε) = 1 +

[
1 +

ε

kT

(
4−√

8
2N

)]N [
1− ε

kT

(
−2 +√

8
N

)]−N/2

(7)

to evaluate Fα as a sum over the poles Npoles = N/2 of fN in the upper half plane,

Fα = 4 Re
Npoles∑
i=1

Tr
[
ai G(zi)

(
∂H

∂rα
− zi

∂S

∂rα

)]
. (8)

Here zi is the i-th pole of fN and ai is its residue. Errors due to the approximate nature
of fN are minimized when the energy or free energy used is stationary with respect to the
electronic occupation function [16]. Defining the forces in terms of derivatives of the grand
thermodynamic potential satisfies this criterion.
The density matrix at finite electronic temperature is localized in real space for both

semiconductors and metals [18,19], in accord with the principle of nearsightedness formulated
by Kohn [20]. While a short-range density matrix could be the result of cancellation between
long-range parts of G(z) in the residue sum, in silicon G(z) at each pole of fN is localized, as
I discuss below. The localization enables the storage and calculation of G(z) in sparse form
by including only matrix elements corresponding to pairs of atoms within a cutoff distance.
Using the biconjugate gradient algorithm [21] to iteratively invert zS − H by solving

(zS − H)x = 1 (9)

is efficient, and enables the application of fixed boundary conditions on G(z), as I describe
below. While the short range of the TB model makes zS −H exactly sparse by construction,
G(z) is only approximately sparse, with a localization range that may differ from that of H
or S. In practice, the range of G(z) is known, and its sparsity is ensured by setting to zero
any components of the gradient that fall outside the sparsity pattern.
To improve the convergence rate, I precondition the linear solver by explicitly multiplying

the left- and right-hand sides of eq. (9) by an approximate matrix inverse. During MD
simulation, the preconditioner is G(z) from the previous time step. To start the simulation, I
use an initial guess for G(z), where matrix elements between a pair of orbitals are set to G(z)
matrix elements between two orbitals in an ideal lattice with a similar relative distance and
orientation. When applied to a sparse matrix the iterative solver converges to a nonsymmetric
matrix, and the solution must be symmetrized.

(1)An expression, valid only for systems with no fractional occupation, that is similar to eq. (6) was proposed
by Jayanthi et al. for the derivative of the zero-temperature electronic energy at fixed electron number [15].
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To use the iterative inversion method (IIM) for simulating a subsection of an infinite
system, I perform the inversion procedure with a constraint on G(z) matrix elements in the
boundary. Atoms outside the simulated region are neglected. Atoms within 4 Å of the outer
surface of the region define the boundary region. AllG(z) matrix elements involving boundary
atoms are held fixed during the iterative matrix inversion procedure to the values they would
have if they were part of an ideal lattice. This constraint is applied by splitting the unknown
x of eq. (9) into the sum of two parts, a constrained part xc and a free part xf , and rewriting
the equation as

(zS − H)xf = 1 − (zS − H)xc . (10)

Any elements of xf that are constrained and therefore accounted for in xc are set to zero.
Without fixing G(z) in the boundary region at the ideal-lattice value, states at the fictitious
surface of the TB region would appear in mid-gap and modify the forces computed within
the region. Computation of the density of states confirms that such gap states are nearly
eliminated by the constraints. One possible refinement would be to compute the local strain
at each atom in the boundary, and fix G(z) matrix elements to values from a uniformly
strained periodic system.

Tests. – In the following I use a nonorthogonal TB model for silicon with a range of
∼5.05 Å [22]. The function fN has eight poles in the upper half plane, scaled to occupy a
valence band width of 15 eV, leading to an effective electronic T of about 0.25 eV. The exact
G(z) evaluated at the poles of fN is localized in real space, decaying exponentially with range
rG < 2.86 Å, with the least localized G(zi) corresponding to the pole closest to the Fermi
level. Comparison with an exact calculation shows that imposing a range cutoff on G(z) of
8.0 Å at all poles leads to a good approximation of the forces. All computations are carried
out at fixed µ, set in the middle of the ideal-lattice band gap. The solver is implemented on
an IBM SP parallel computer using MPI [23] for interprocess communications. The work is
divided among the processors by splitting x and the right-hand side of eq. (9) by column,
and duplicating zS − H and the preconditioner on each processor. The linear scaling of the
computational time for systems with 128 to 1728 atoms is shown in fig. 1. Parallel efficiency
for up to 50 processors is greater than 0.7.
As a test, I calculate the forces around an ideal silicon vacancy to compare periodic su-

percell exact diagonalization with the IIM for a nonperiodic system. In fig. 2, I plot the
magnitude of the force on each atom as a function of its distance from the vacancy for a
12 Å radius TB region, compared with an exact diagonalization calculation of a 16.29 Å cubic
supercell. Both calculations are performed at constant µ set in the middle of the ideal-lattice
band gap, with the same electronic temperature. The forces on atoms near the vacancy are
very accurately computed by the IIM, with an RMS deviation of 0.025 eV/Å. As expected,
the disturbance caused by the fictitious surface of the TB region is only significant in the
constrained boundary region.

Application to dislocation core structures. – The simulation of a single dislocation is an
application that takes advantage of the IIM’s ability to simulate nonperiodic systems. The TB
model used [22] was fit to the energies of strained bonds and coordination defects in silicon,
and should accurately predict the energies of geometries likely to appear in the dislocation
core. The simulations follow a three-step process. The initial configuration is created by
applying the solution for the displacement field around an isolated screw dislocation in an
infinite isotropic elastic medium to a diamond structure lattice (see ref. [24], p. 60). The
dislocation line is aligned along a [110] direction in the shuffle planes. The system comprises
a cylinder parallel to the [110] direction, 22.0 Å in radius and 15.36 Å long, with periodic
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Fig. 1 – Computational time for one MD time step as a function of number of atoms in the system,
measured on 32 nodes of an IBM SP/P3.

Fig. 2 – Force on each atom in a system with a vacancy as a function of distance from the vacancy
computed in a nonperiodic system with the IIM, and compared with a periodic system with exact
diagonalization. Vertical lines indicate extent of electronic constraint region.

boundary conditions along the axis. The configuration is relaxed with a simple pair potential,
quadratic in the interatomic distance with a minimum at the ideal nearest-neighbor distance
of 2.35 Å. Atoms farther than 18.0 Å from the axis of the cylinder are held fixed. The TB
MD code is then used to evolve the atomic configurations at constant temperature using the
velocity Verlet algorithm [25, 26] with a 0.5 fs time step. Atoms that were held fixed during
the initial pair potential relaxation are considered part of the boundary region and their G(z)
matrix elements are constrained.
The left panel of fig. 3 shows the TB MD relaxed core structure, generated by evolving

the configuration for 50 fs while rescaling the atomic velocities after every time step to keep
the temperature fixed at 50 K. The core shows substantial bond bending, but no coordination

Fig. 3 – Core structures of a screw dislocation in the shuffle plane at 50 K (left), 500 K (middle), and
1000 K (right). A 9 Å thick slice is shown, viewed along the [11̄1] direction, with the [110] dislocation
line direction pointing to the right. Bonds are drawn between atoms that are less than 2.8 Å apart.
Fourfold coordinated atoms are in white, undercoordinated atoms are black, and overcoordinated
atoms are grey.
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defects. Since silicon dislocations are believed to be active only at high temperatures (above
850 K) [27], I plot the structures of the screw dislocation after a 500 fs anneal at 500 K
(fig. 3 middle panel) or 1000 K (fig. 3 right panel). The melting point of this model in MD
simulation is between 1250 K and 1500 K, lower than the experimental value of 1685 K [28].
At 500 K the dislocation core has distorted, creating a partially ordered reconstruction with
overcoordination defects. The 50 K and 500 K structures are conventional ordered structures,
reminiscent of the asymmetric and symmetric reconstructions proposed for the 90◦ partial
dislocation [29]. Between 500 K and 1000 K, the structure undergoes a dramatic change:
it becomes broader and disordered, with many coordination defects. This high-temperature
structure is unlike the conventional description, which characterizes thermally activated de-
fects in the dislocation core in terms of geometrically simple features such as dislocation line
kinks, jogs, and reconstruction solitons [24, 30, 31]. Annealing the 1000 K structure at 500 K
does not restore the 500 K structure in fig. 3. Since the constraints on G make the energies ill
defined, it is not possible to determine whether this is because the 500 K structure in fig. 3 is
not the lowest energy structure, or whether it is because of the limited length of the anneal.

Discussion. – The appearance of disorder is driven by a combination of increased entropy
and strain relief that lower the free energy. It is perhaps analogous to surface premelting [32],
with high strain at the core, rather than the free surface, weakening the bonds. If this observa-
tion of disorder is also applicable to the partial dislocations that are experimentally observed
in silicon [31, 33], it could affect their mobility through several competing mechanisms. As
in diffusion in diamond structure materials [34], coordination defects could reduce the energy
barriers to core motion by providing the mobility necessary for rearrangement of interatomic
bonds. The broadening of the core could lead to increased mobility by reducing the Peierls
stress, as would be predicted by the Frenkel-Kontorova model (see ref. [24], p. 240). However,
disorder in the core could hinder motion by creating a configurational entropy barrier to dis-
location motion, which must leave behind an ordered lattice. The net effect of core disorder
on dislocation mobility is therefore controlled by a subtle balance that will have to be studied
by direct simulation of the motion of a dislocation under an applied stress.
The iterative inversion method enables the use of nonorthogonal TB models for the simula-

tion of large numbers of atoms. It is well suited for simulating a subsection of an infinite system
with a complex boundary, such as the nonperiodic configurations that arise in a wide range
of systems including dislocations and multiscale phenomena. The application of this method
to the structure of an isolated dislocation in silicon has revealed a new level of complexity in
this system. The role of disorder on the properties of dislocations at high temperatures will
be studied in future work on this subject.
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